Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Genet Mol Res ; 6(2): 250-5, 2007 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-17573654

RESUMO

Although different DNA polymerases have distinct functions and substrate affinities, their general mechanism of action is similar. Thus, they can all be studied using the same technical principle, the primer extension assay employing radioactive tags. Even though fluorescence has been used routinely for many years for DNA sequencing, it has not been used in the in vitro primer extension assay. The use of fluorescence labels has obvious advantages over radioactivity, including safety, speed and ease of manipulation. In the present study, we demonstrated the potential of non-radioactive in vitro primer extension for DNA polymerase studies. By using an M13 tag in the substrate, we can use the same fluorescent M13 primer to study different substrate sequences. This technique allows quantification of the DNA polymerase activity of the Klenow fragment using different templates and under different conditions with similar sensitivity to the radioactive assay.


Assuntos
DNA Polimerase I/metabolismo , Primers do DNA/metabolismo , Escherichia coli/enzimologia , Fluoresceína/metabolismo , Análise de Sequência de DNA , Automação , Concentração de Íons de Hidrogênio
2.
Genet. mol. res. (Online) ; 6(2): 250-255, 2007. ilus, graf
Artigo em Inglês | LILACS | ID: lil-482046

RESUMO

Although different DNA polymerases have distinct functions and substrate affinities, their general mechanism of action is similar. Thus, they can all be studied using the same technical principle, the primer extension assay employing radioactive tags. Even though fluorescence has been used routinely for many years for DNA sequencing, it has not been used in the in vitro primer extension assay. The use of fluorescence labels has obvious advantages over radioactivity, including safety, speed and ease of manipulation. In the present study, we demonstrated the potential of non-radioactive in vitro primer extension for DNA polymerase studies. By using an M13 tag in the substrate, we can use the same fluorescent M13 primer to study different substrate sequences. This technique allows quantification of the DNA polymerase activity of the Klenow fragment using different templates and under different conditions with similar sensitivity to the radioactive assay.


Assuntos
Análise de Sequência de DNA , DNA Polimerase I/metabolismo , Escherichia coli/enzimologia , Fluoresceína/metabolismo , Primers do DNA/metabolismo , Automação , Concentração de Íons de Hidrogênio
3.
Genet. mol. res. (Online) ; 2(1): 77-91, Mar. 2003.
Artigo em Inglês | LILACS | ID: lil-417622

RESUMO

The bacteria Escherichia coli has been widely employed in studies of eukaryotic DNA repair genes. Several eukaryotic genes have been cloned by functional complementation of mutant lineages of E. coli. We examined the similarities and differences among bacterial and eukaryotic DNA repair systems. Based on these data, we examined tools used for gene cloning and functional studies of DNA repair in eukaryotes, using this bacterial system as a model


Assuntos
Animais , Células Eucarióticas , Escherichia coli/genética , Reparo do DNA , Sequência de Bases , Clonagem Molecular , Dano ao DNA , Escherichia coli/enzimologia , Genes Bacterianos , Modelos Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...